

# "Polar Vortex" Event in the US Midwest

## Why in news?

\n\n

A record-breaking cold wave has swept through the US Midwest, with 22 states hitting sub-zero temperatures.

\n\n

### What is the condition at present?

\n\n

\n

- Among cities, Chicago dropped to a low of -30°C, slightly above the city's lowest-ever reading of -32°C from 1985.  $\n$
- Minneapolis recorded -32°C.
  - ∖n
- The extreme cold has been caused by a blast of Arctic air, which in turn is a result of what is known as a "polar vortex" event.

\n\n

#### What is a polar vortex?

\n\n

\n

• The polar vortex is a large area of low pressure and cold air surrounding both of the Earth's poles.

\n

- The system has a whirling mass of cold air circulating in the mid- to upper-levels of the atmosphere, flowing counter-clockwise.  $\n$
- This flow of air helps in containing the colder air within the poles.  $\slash n$

\n\n

## What is a "polar vortex" event?

∖n

\n\n

- Normally, when the vortex is strong and healthy, it helps keep a current of air (the jet stream) travelling around the globe in almost a circular path.  $\n$
- This current contains the cold air north of it and the warm air south of it.  $\n$
- But in winter, in the northern hemisphere, the polar vortex sometimes becomes less stable and expands.
  \n
- This occurs when there is a lack of a strong low-pressure system, resulting in jet stream losing the hold to keep it in line, and becoming wavy. n
- So a wave of cold air will be pushed down south.  $\space{\label{eq:linear} \label{eq:linear} \label{eq:linear} \space{\space{\label{eq:linear} \label{eq:linear} \label{eq:linear} \space{\space{\label{eq:linear} \label{eq:linear} \label{eq:linear} \space{\space{\label{eq:linear} \label{eq:linear} \label{eq:linear} \label{eq:linear} \space{\label{eq:linear} \label{eq:linear} \label{eq:linear} \space{\label{eq:linear} \label{eq:linear} \label{eq:linear} \label{eq:linear} \space{\label{eq:linear} \label{eq:linear} \label{eq:linear} \label{eq:linear} \label{eq:linear} \space{\label{eq:linear} \label{eq:linear} \label{e$
- This is called a polar vortex event, defining the "breaking off" of a part of the vortex.

\n

\n\n



\n\n

## Where does it happen?

\n\n

\n

- A polar vortex event is not confined to the US.  $\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\space{1mm}\sp$
- Portions of Europe and Asia also experience cold surges connected to the polar vortex.

∖n

- The risk lies in the magnitude of how cold temperatures will get when the polar vortex expands, sending Arctic air southward into areas that are not usually that cold.  $\n$ 

\n\n

\n\n

### **Source: The Indian Express**

